Effects of Parathyroid Hormone on Calcium Ions in Rat Bone Marrow Mesenchymal Stem Cells
نویسندگان
چکیده
The present study was conducted in order to explore the mechanisms whereby parathyroid hormone (PTH) maintains in vitro proliferation of bone marrow mesenchymal stem cells (BMSCs). Bone marrow was isolated from Sprague Dawley (SD) rat femurs, cultured in vitro, and passaged using a cell adherent culture method. The BMSC proliferation was evaluated by the methyl thiazolyl tetrazolium (MTT) assay and the fluorescence intensity of calcium ions in BMSCs was analyzed by laser scanning confocal microscopy (LSCM). Our results show that BMSC proliferation in the experimental group treated with PTH was more significant than controls. The calcium ion fluorescence intensity in BMSCs was significantly higher for the experimental group as compared to the control group. For each group, there was significant difference in the fluorescence intensity of calcium ions in BMSCs between 7 d and 14 d. In conclusion, parathyroid hormone increased the fluorescence intensity of calcium ions in BMSCs, which might represent a key mechanism whereby BMSC proliferation is maintained.
منابع مشابه
The Consequence of Vitamin E Exposure on In Vitro Cadmium Toxicity in Rat Bone Marrow Mesenchymal Stem Cells
This investigation aimed to examine the protective function of vitamin E on rat bone marrow mesenchymal stem cells (MSCs) treated with cadmium chloride. Rat bone marrow MSCs were extracted using flashing-out and cultured in DMEM containing 10% FBS and 100 U/ml Pen/Strep. At the end of the third passage, cells were divided into 4 groups including control, cadmium chloride, cadmium chloride + vit...
متن کاملCalcitriol modulates the effects of bone marrow-derived mesenchymal stem cells on macrophage functions
Objective(s):Some evidence showed that calcitriol has an important role in regulating growth and differentiation of mesenchymal stem cells (MSCs). However, the interaction between mesenchymal stem cells and macrophage is not clear yet. The current study was done to investigate the in vitro effects of calcitriol on the interactions between bone marrow-derived MSCs and rat macrophages. Material...
متن کاملEffect of Lithium Chloride on Proliferation and Bone Differentiation of Rat Marrow-Derived Mesenchymal Stem Cells in Culture
Objective(s) It is believed that the mesenchymal stem cell (MSC) differentiation and proliferation are the results of activation of wnt signaling pathway. On the other hand, lithium chloride is reported to be able to activate this pathway. The objective of this study was to investigate the effect of lithium on in vitro proliferation and bone differentiation of marrow-derived MSC. Materials and ...
متن کاملMyo-inositol at High Concentration Reduced Viability and Proliferation of Rat Bone Marrow Mesenchymal Stem Cells via Electrolyte Imbalance and Elevation of Aerobic Metabolism
Myo-inositol (MI) which is produced at low concentration is an essential substance for animal’s natural growth. This study was performed to investigate the effects of MI on viability, proliferation and some biochemical factors of rat bone marrow mesenchymal stem cells (BMSCs). To investigate the cell viability using trypan blue assay, BMSCs after third passage were treated with different concen...
متن کاملThe effect of long term treatment of lowest effective dose of para-nonylphenol on viability, morphology and proliferation of rat bone marrow mesenchymal stem cells
Introduction: In this study, the effect of para-nonylphenol as an environmental pollutant on viability, morphology and proliferation of bone marrow mesenchymal stem cells was investigated. Methods: Bone marrow mesenchymal stem cells of rat were treated with the 0.5, 1, 2.5, 3.5 and 5 μM of paranonylphenol for a period of 21 days, then the viability of the cells were estimated using trypan bl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014